Inverse RNA folding solution based on multi-objective genetic algorithm and Gibbs sampling method
نویسندگان
چکیده
In living systems, RNAs play important biological functions. The functional form of an RNA frequently requires a specific tertiary structure. The scaffold for this structure is provided by secondary structural elements that are hydrogen bonds within the molecule. Here, we concentrate on the inverse RNA folding problem. In this problem, an RNA secondary structure is given as a target structure and the goal is to design an RNA sequence that its structure is the same (or very similar) to the given target structure. Different heuristic search methods have been proposed for this problem. One common feature among these methods is to use a folding algorithm to evaluate the accuracy of the designed RNA sequence during the generation process. The well known folding algorithms take O(n(3)) times where n is the length of the RNA sequence. In this paper, we introduce a new algorithm called GGI-Fold based on multi-objective genetic algorithm and Gibbs sampling method for the inverse RNA folding problem. Our algorithm generates a sequence where its structure is the same or very similar to the given target structure. The key feature of our method is that it never uses any folding algorithm to improve the quality of the generated sequences. We compare our algorithm with RNA-SSD for some biological test samples. In all test samples, our algorithm outperforms the RNA-SSD method for generating a sequence where its structure is more stable.
منابع مشابه
MODENA: a multi-objective RNA inverse folding
Artificially synthesized RNA molecules have recently come under study since such molecules have a potential for creating a variety of novel functional molecules. When designing artificial RNA sequences, secondary structure should be taken into account since functions of noncoding RNAs strongly depend on their structure. RNA inverse folding is a methodology for computationally exploring the RNA ...
متن کاملModel and Solution Approach for Multi objective-multi commodity Capacitated Arc Routing Problem with Fuzzy Demand
The capacitated arc routing problem (CARP) is one of the most important routing problems with many applications in real world situations. In some real applications such as urban waste collection and etc., decision makers have to consider more than one objective and investigate the problem under uncertain situations where required edges have demand for more than one type of commodity. So, in thi...
متن کاملInverse folding of RNA II
In the Oxford Summer School in Computational Biology 2011, one of the projects was aimed at creating an improved method for inverse RNA folding based on a genetic algorithm (GA) approach. This turned out to be sufficiently successful [16] and inspiring, that we will extend on it in this year’s summer school. The inverse RNA folding problem consists of finding an RNA sequence that, as a molecule...
متن کاملMulti-Objective Genetic Algorithm for Pseudoknotted RNA Sequence Design
RNA inverse folding is a computational technology for designing RNA sequences which fold into a user-specified secondary structure. Although pseudoknots are functionally important motifs in RNA structures, less reports concerning the inverse folding of pseudoknotted RNAs have been done compared to those for pseudoknot-free RNA design. In this paper, we present a new version of our multi-objecti...
متن کاملLoad Frequency Control in Power Systems Using Multi Objective Genetic Algorithm & Fuzzy Sliding Mode Control
This study proposes a combination of a fuzzy sliding mode controller (FSMC) with integral-proportion-Derivative switching surface based superconducting magnetic energy storage (SMES) and PID tuned by a multi-objective optimization algorithm to solve the load frequency control in power systems. The goal of design is to improve the dynamic response of power systems after load demand changes. In t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2013